

Igor Eduardo Otiniano Mejía

Comportamento dinâmico de dutos enterrados: Metodologia e Implementação Computacional

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

> Orientadores: Deane de Mesquita Roehl Celso Romanel

> > Rio de Janeiro, setembro de 2008

Igor Eduardo Otiniano Mejía

Comportamento dinâmico de dutos enterrados:

Metodologia e Implementação Computacional

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof^a . Deane de Mesquita Roehl Orientador PUC-Rio

> Prof. Celso Romanel Co-orientador PUC-Rio

Prof. João Luís Pascal Roehl Departamento de Engenharia Civil - PUC-Rio

Prof. Paulo Batista Gonçalves Departamento de Engenharia Civil - PUC-Rio

> Prof^a . Mildred Ballin Hecke Universidade Federal do Paraná

Prof. Fernando Saboya A. Junior Universidade Estadual do Norte Fluminense

José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 11 de setembro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Igor Eduardo Otiniano Mejía

Mestre em Engenharia Civil pela PUC-Rio em 2003. Graduado em Engenharia Civil pela Universidade Privada de Tacna em 1994. Atua na linha de pesquisa de termodinâmica e dutos enterrados.

Ficha Catalográfica

Otiniano Mejía, Igor Eduardo

Comportamento dinâmico de dutos enterrados: metodologia e implementação computacional / Igor Eduardo Otiniano Mejía ; orientadores: Deane de Mesquita Roehl, Celso Romanel. – 2008.

167 f.; 30 cm

Tese (Doutorado em Engenharia Civil)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

 Engenharia civil – Teses. 2. Elementos finitos.
 Elementos de interface. 4. Interação solo-duto. 5. Modelo linear-equivalente. 6. Tubulações enterradas.
 Roehl, Deane de Mesquita. II. Romanel, Celso. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

Aos meus pais Ricardo (*in memoriam*) e Esperanza, à minha esposa Ana, e ao meu filho José Ricardo, pelas orações, apoio e confiança.

Agradecimentos

Primeiramente, agradeço a Deus por ter me dado a oportunidade de estar no mundo.

As pessoas que passaram e passam pelo que eu passei e passo: ficar longe da família em busca de um ideal comum.

A minha orientadora Professora Deane Roehl, um muito obrigado especialíssimo pela oportunidade de desenvolvimento desta pesquisa, pela enorme disponibilidade para orientação, confiança e paciência para o desenvolvimento deste trabalho - "chegamos".

Ao Professor Celso Romanel, por ter me ajudado para que eu encontrasse o melhor caminho para a conclusão desta jornada.

Aos professores do curso de Pós-Graduação do Departamento de Engenharia Civil - PUC-Rio pelos ensinamentos transmitidos durante os cursos de Mestrado e Doutorado.

Aos meus amigos, dos cursos do mestrado e doutorado, especialmente aos da sala 609 que proporcionaram sempre enriquecedores debates, pela amizade e agradável convívio.

Aos funcionários da secretaria de Engenharia Civil, pela atenção para comigo e extraordinário desempenho para com todos os alunos.

À "Cidade Maravilhosa", por ter sido a cidade que me acolheu em seu berço.

À Capes e ao CNPq pelo apoio financeiro.

Resumo

Otiniano Mejía, Igor Eduardo; Roehl, Deane. **Comportamento dinâmico de dutos enterrados: Metodologia e Implementação Computacional.** Rio de Janeiro, 2008. 167p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho apresenta-se uma metodologia de análise do comportamento mecânico de dutos enterrados usados no transporte de gás e outros fluidos sujeitos a cargas dinâmicas. Em especial são considerados carregamentos provocados por sismos. Emprega-se uma modelagem em elementos finitos com base em uma discretização com elementos especiais de viga para modelar o duto. Não linearidades geométricas e do material são consideradas numa formulação Lagrangeana total. As equações de equilíbrio são formuladas a partir do principio dos trabalhos virtuais, segundo as componentes de tensão e deformação no elemento viga-duto. A técnica do Módulo Reduzido de Integração Direta (RMDI) é empregada na qual se incorpora o comportamento elasto-plástico do material. Esta abordagem exclui da análise os efeitos do enrugamento nas paredes do duto. As matrizes para resolução por elementos finitos dessas equações são derivadas. Nessa metodologia os efeitos da interação solo-duto são incorporados. O solo é modelado através de elementos bidimensionais considerando um modelo constitutivo Linear-Equivalente, acoplados ao duto por meio de elementos de interface localizados entre o duto e o solo. Finalmente são considerados contornos artificiais amortecidos para possibilitar a representação do problema através de um trecho finito. Foram usados para as análises históricos de acelerações do tipo sismo, entre estes o sismo ocorrido em Pisco - Perú no ano 2007. Desenvolve-se um programa para computador segundo a metodologia apresentada. Finalmente são estudados alguns exemplos com o objetivo de avaliar numericamente os resultados da análise obtidos e formular algumas conclusões sobre o comportamento de dutos enterrados sujeitos a cargas dinâmicas.

Palavras-chave

Elementos finitos; interação solo-duto; elementos de interface; modelo linear equivalente; tubulações enterradas.

Abstract

Otiniano Mejía, Igor Eduardo; Roehl, Deane. **Dynamic Behavior of buried pipes Methodology** and computational implementation. Rio de Janeiro, 2008. 167p. D.Sc. Thesis – Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

This work presents a numerical methodology for the analysis of buried pipes employed by the transport of oil and gas subject to dynamic loads. Emphasis is given to seismic loads. A finite element model based on a special class of beam element for the pipe representation is employed. Both geometric and material nonlinearities are considered in a total Lagrangean formulation. The equilibrium equations are formulated based on the virtual work principle considering the stress and deformation components of the beam-pipe element. The Reduced Modulus Direct Integration (RMDI) technique is employed by which the elasto-plastic material behavior is incorporated. This technique excludes from the analysis the local buckling effects of the pipe walls. The corresponding finite element matrices for this element are obtained. In this methodology the effects of the constant internal pressure as well as the soil-pipe interaction are included. The soil is modeled through two-dimensional elements with material behavior described through a linear equivalent model. Interface elements couple beam-pipe elements with soil elements and account for soil-pipe interaction. Finally silent boundary elements are incorporated to the model to reproduce the semi-infinite boundary conditions in the finite size model. Distributed loads are considered constant with respect to the global axis. Acceleration histories are applied to simulate seismic dynamic loads among which the acceleration histories of the earthquake which occurred in Pisco-Perú in 2007. A finite element computer code is developed according to the methodology presented. Some examples are studied with the objective to evaluate numerically the analysis results and to formulate some conclusions to the behavior of buried pipes subject to seismic loads.

Keywords

Finite elements; soil-pipe interaction; interface elements; linear equivalent model; buried pipes.

Sumário

1 Introdução	22
1.1 Tubulações enterradas	22
1.2 Transporte de gás natural	23
1.3 Efeitos sísmicos	26
1.3.1 Parâmetros sismológicos.	29
1.3.2 Ondas planas de tensão (elásticas)	31
1.4 Objetivos e organização do trabalho	33
2 Modelos para dutos enterrados	36
2.1 Mecânica do problema	36
2.2 Definição do movimento	37
2.3 Modelos numéricos de interação duto-solo	39
2.4 Pesquisas na área de tubulações.	40
2.5 Procedimento simplificado para projeto sísmico de dutos	
enterrados	45
3 Formulação do elemento viga-duto	52
3.1 Introdução	52
3.2 Hipóteses do modelo matemático	52
3.3 Hipóteses cinemáticas fundamentais	53
3.4 Relações constitutivas	57
3.4.1 Algoritmo implícito de Euler (Backward Euler)	63
3.4.2 Integração das tensões	65
3.5 Equação de trabalho virtual incremental	67
3.6 Discretização em elementos finitos	69
3.6.1 Interpolação de deslocamentos	70
3.6.2 Matrizes de deformação-deslocamento	73
3.6.3 Equações de equilíbrio para o elemento finito	74
4 Formulação do modelo numérico do solo	77

4.1 Modelo	os constitutivos	77
4.2 Compo	ortamento dos solos	78
4.3 Resum	no dos principais modelos constitutivos para solos	81
4.4 Modelo	b Linear Equivalente	82
4.5 Discret	tização do elemento finito para o solo	90
5 Elemente	os finitos de interface e contornos artificiais	94
5.1 Eleme	nto de Goodman, Taylor e Brekke (1967).	94
5.2 Elemen	nto de Ghaboussi, Wilson e Isenberg (1973)	97
5.3 Elemen	nto de Pande e Sharma (1979)	100
5.4 Eleme	nto de Desai, Lightner e Siriwardane (1984).	104
5.5 Critério	os e métodos numéricos utilizados nos contornos artificiai	S
do me	io contínuo.	106
5.5.1 Cont	ornos absorventes locais no domínio do tempo	107
5.5.2 Matri	z de elementos de contorno	107
5.5.3 Cont	role do tamanho do elemento	108
6 Métodos	de solução	110
6.1 Introdu	ıção	110
6.2 Revisã	o de procedimentos de solução	110
6.3 Proces	so iterativo para solução do sistema de equações de	
equilíb	rio não lineares: método Newton-Raphson	111
6.4 Soluçã	o do sistema de equações de equilíbrio no domínio do	
tempo		115
6.4.1 Algo	ritmos de integração	116
6.4.2 Algo	ritmos de Newmark incondicionalmente estáveis	116
6.4.3 Conv	/ergência de um algoritmo	118
7 Exemplo	s e validação da metodologia.	120
7.1 Verifica	ação do modelo elástico linear.	120
7.2 Verifica	ação do modelo linear equivalente.	124
7.3 Verifica	ação do Modelo Linear Equivalente para um histórico de	
acelera	ações.	126
7.4 Verifica	ação do Modelo Linear Equivalente para um histórico de	

		acelerações e consideração de contornos absorventes.	129
7.5	١	Verificação do modelo duto-solo submetido a cargas dinâmicas.	131
7.6	١	Verificação do modelo duto - solo usando aço API- 5L ϕ 500mm.	
		e um sismo de 8,0 graus de magnitude (Pisco – Perú 2007).	133
7.7	١	Verificação do modelo duto-solo usando aço API- 5L ϕ 600mm e	
		um sismo de 8,0 graus de magnitude (Pisco – Perú 2007).	139
7.8	١	Verificação do modelo duto-solo usando aço API- 5L ϕ 600mm e	
		um sismo de 8,0 graus de magnitude (Pisco – Perú 2007) e	
		efeitos de subpressão.	141
7.9	١	Verificação do modelo duto - solo usando aço API- 5L ϕ 500mm	
		e um sismo de 8.0 graus de magnitude considerando tensões	
		residuais (caso ocorrido no projeto Camisea - Perú.)	143
8	Сс	onclusões	148
0	D	oforôncias hibliográficos	150
9	R		192
10	Ar	пехо	159
10.	1	Perfil Geotécnico – Areias do setor de Camisea	159
10.	2	Efeito da forma das partículas – Areias do setor de Camisea	165

Lista de figuras

Figura 1.1 – Esquema de tubulação enterrada22
Figura 1.2 - Reservas de gás natural da América do Sul. (Gástech)25
Figura 1.3 – Principais conexões dos gasodutos entre os países da
América do sul25
Figura 1.4 - Bloco - diagrama mostrando uma representação
esquemática do foco ou hipocentro, plano de falha e
epicentro26
Figura 1.5 - Continente universal Pangea28
Figura 1.6 - Distribuição geográfica das placas tectônicas da terra. Os
números representam as velocidades em cm/ano entre as
placas, e as setas, os sentidos do movimento. Teixeira,
Toledo, Fairchild e Taioli (2000)28
Figura 1.7 - Efeitos de subducção entre duas placas adjacentes29
Figura 1.8 - Acelerograma e suas principais características
Figura 1.9 - Diferentes tipos de ondas planas de tensão em material
sólido

Figura 3.2 - Configurações deformadas para $t = 0$, $t = t$ e $t = t + \Delta t$
Figura 3.3 - Deformações no tubo fletido55
Figura 3.4 - Exemplo de divisão da seção transversal do duto62
Figura 3.5 - Superfície de plastificação: princípio da normalidade63
Figura 3.6 - Procedimento de integração implícito e explícito65
Figura 3.7 - Elemento de viga com três nós70
Figura 3.8 - Inclinação do elemento de viga-duto73
Figura 4.1 - a) Variação de K com p', b) Variação de G com p' e com
<i>τ</i> _{oct} 80
Figura 4.2 - Relação tensão - deformação para diferentes deformações.
Report No EERC-70-1083
Figura 4.3 - Curvas de variação do módulo de cisalhamento para areias
sob diferentes densidades relativas – Seed e Idriss (1970). 86
Figura 4.4 - Curvas de variação do módulo de cisalhamento para
diferentes índices de plasticidade – Vucetic e Dobry (1991) 87
Figura 4.5 - Curvas de variação da razão de amortecimento para
diferentes índices de plasticidade – Vucetic e Dobry (1991) 88
Figura 4.6 - Definição das coordenadas naturais de um triangulo90
Figura 5.1 - Elemento de junta, espessura nula = 0, sistema de
coordenadas locais ξ,η 95
Figura 5.2a - Geometria do elemento de interface
[Ghaboussi, Wilson e Isenberg (1973)]97
Figura 5.2b - Detalhe do elemento de interface
[Ghaboussi, Wilson e Isenberg (1973)]98
Figura 5.3a - Elemento de interface com dois elementos planos
adjacentes [Pande e Sharma (1979)]
Figura 5.3b - Elemento de interface isoparamétrico parabólico
[Pande e Sharma (1979)]101
Figura 5.4 - Esquema dos modos de deformação na interface
[Desai, Lightner e Siriwardane (1984)]
Figura 5.5 - Esquema do elemento de interface
[Desai, Lightner e Siriwardane (1984)]106
Figura 7.1 - Esquema do estrato horizontal

Figura 7.2 -	Malhas de elementos finitos usados nas análises1	22
Figura 7.3 -	Resposta elástica linear para o deslocamento no tempo	
	para a parte superior do estrato (nó 92 da figura 7.2)1	23
Figura 7.4 -	Resposta elástica linear para o deslocamento no tempo	
	para a parte media do estrato (nó 47 da figura 7.2)1	23
Figura 7.5 -	Valores da variação do módulo de rigidez ao cisalhamento	
	G com a deformação cisalhante (EERC 70-10	
	DECEMBER 1970 – SOIL MODULI AND DAMPING	
	FACTORS FOR DYNAMIC RESPONSE ANALYSES)1	24
Figura 7.6 -	Valores da razão de amortecimento (Report EERC 70-10	
	DECEMBER 1970 – SOIL MODULI AND DAMPING	
	FACTORS FOR DYNAMIC RESPONSE ANALYSES)1	25
Figura 7.7 -	Resposta Linear Equivalente para o deslocamento	
	horizontal para a parte superior do estrato	
	(nó 92 figura 7.2)1	25
Figura 7.8 -	Resposta Linear Equivalente para o deslocamento	
	horizontal para a parte media do estrato	
	(nó 47 figura 7.2)1	26
Figura 7.9 -	Acelerograma usado na análise1	27
Figura 7.10	 Malha de elementos finitos usada na análise com o 	
	programa QUAKE1	28
Figura 7.11	- Malha de elementos finitos gerada pelo programa MTool 1	28
Figura 7.12	- Deslocamento horizontal no tempo - malha sem	
	contornos absorventes1	29
Figura 7.13	- Deslocamento horizontal no tempo considerando a	
	malha com contornos absorventes1	30
Figura 7.14	- Malha com contornos absorventes, duto e elementos	
	de interface1	31
Figura 7.15	- Deslocamento horizontal no tempo, Para o ponto 11	32
Figura 7.16	- Deslocamento horizontal no tempo, Para o ponto 31	33
Figura 7.17	- Tensão – Deformação para aço API- 5L-X701	34
Figura 7.18	- Acelerograma usado na analises e Período espectral do	
	Sismo1	35

Figura 7.20 - Seção do duto, subdivisão do duto e ponto de avaliação
de tensões136
Figura 7.21 - Deslocamento horizontal no tempo, Para o ponto 1 137
Figura 7.22 - Tensão - Tempo, para o ponto 1 (parte superior do duto) 138
Figura 7.23 - Tensão - Tempo, para o ponto 1 (parte superior do duto) 138
Figura 7.24 - Seção do duto, subdivisão do duto e ponto de avaliação
de tensões139
Figura 7.25 - Deslocamento horizontal no tempo, para o ponto 1140
Figura 7.26 - Tensão - Tempo, para o ponto 1 (parte superior do duto) 140
Figura 7.27- Tensão, para o ponto 1 (parte superior do duto)141
Figura 7.28 – Subpressão aplicada ao duto142
Figura 7.29 – Deslocamento horizontal no tempo, para o ponto 1142
Figura 7.30 – Tensão, para o ponto 1 (parte superior do duto)143
Figura 7.31 - Falha no poliduto acontecida no dia 22 de dezembro do
2004144
Figura 7.32 - Seção do duto, região da solda145
Figura 7.33 - Tensões para o ponto 1 parte superior do duto sem
solda146
Figura 7.34 - Tensões para o ponto 1 parte superior do duto Tensão
Residual = 100 MPa146
Figura 7.35 - Tensão para o ponto 1147
Figura 10.1 - Sismógrafo Digital ORION 3S159
Figura 10.2 - Ensaio de Penetração Estandar (SPT)
Figura 10.3 - Ensaio de Piezocone (CPTU)
Figura 10.4 - Ensaio do Dilatômetro de Marchetti (DMT)163
Figura 10.5 – Velocidades de ondas S e P nas areias da região de
Camisea164
Figura 10.6 - Carta de esfericidade (S) e redondez (R)
Figura 10.7 - Distribuição pelo tamanho do mineral, onde se nota o
predomínio dos grãos angulares

Lista de símbolos

A	área;
A_m	aceleração máxima do solo perpendicular à direção de propagação da
	onda;
В	operador de deformação deslocamento
С	velocidade de propagação da onda sísmica;
$C_{\theta x}$	razão entre deformação circunferencial e deformação longitudinal;
C_{rx}	razão entre deformação radial e deformação longitudinal;
C^{EP}	modulo elasto-plástico;
C_E^B	amortecimento para o elemento de contorno;
D	diâmetro exterior do duto;
D_{ep}	matriz elasto-plástica;
E	modulo de Young ou Elasticidade;
F	força axial;
f _y	tensão de escoamento;
${}^{t}F_{eq}$	força axial equivalente;
g	aceleração da gravidade;
G	modulo de cisalhamento;
H'	constante de encruamento equivalente;
IP	índice de plasticidade;
Κ	rigidez volumétrica;
K_{g}	curvatura máxima do solo;
K_1	coeficiente de rigidez da seção transversal de uma viga (axial);
K_2	coeficiente de rigidez da seção transversal de uma viga (flexão);
<i>K</i> ₃	coeficiente de rigidez da seção transversal de uma viga (coupling);
^{t}L	comprimento corrente do elemento viga-tubo;
L_i	funções de interpolação de elementos finitos triangulares;
${}^{t}M_{eq}$	momento equivalente;
MM	escala de Mercalli Modificada;

ML	magnitude local;
$^{t}N_{i}$	funções de interpolação de elementos finitos viga-duto;
р	pressão interna;
^t S _{ij}	tensor desviador do segundo tensor de tensões Piola-Kirchhoff;
${}^{t}S_{ij}$	segundo tensor de tensões Piola-Kirchhoff;
S	tensão;
\overline{S}	tensão efetiva;
S_{y}	tensão cisalhante máxima;
${}^{t}S_{ heta}$	tensão circunferencial constante;
S_x	tensão longitudinal;
S_r	tensão radial;
t	espessura do duto;
r	radio;
R	forças internas;
<i>u</i> , <i>v</i>	deslocamentos em coordenadas locais x, y;
υ	coeficiente de Poisson;
V_m	velocidade horizontal máxima do solo;
V_p	velocidade de propagação de onda P;
V_s	velocidade de propagação de onda S;
V_d	vetor de desequilíbrio de forças;
tol	tolerância;
т	quantidade de sub incrementos;
h	parâmetro de endurecimento;
p'	tensão media efetiva;
U	forças desbalanceadas;
W _{ext}	trabalho externo;
P_a	pressão atmosférica;
PHA	aceleração pico horizontal;
K_{2max}	coeficiente adimensional;
D_r	densidade relativa;
TCF	trilhão de pés cúbicos;
T_i	matriz de transformação (elemento de interface);

T_u	resistência ultima horizontal axial;
P_u	resistência ultima horizontal transversal;
Q_u	resistência ultima horizontal vertical;
u_r	deslocamento relativo;
е	espessura do elemento;
e_n	erro global;
x_{si}	tamanho de sub incremento;
\tilde{x}, \tilde{y}	coordenadas globais;
α	angulo de orientação;
α, β	parâmetros de amortecimento de Rayleigh;
α'	constante entre 0 e 1;
β,γ	parâmetro do algoritmo de integração numérica;
$\lambda_{_M}$	porção da matriz de massa;
$\lambda_{_K}$	porção da matriz de rigidez;
$d\overline{\varepsilon}^{p}$	deformação plástica efetiva incremental;
$\frac{-P}{\mathcal{E}}$	deformação plástica efetiva acumulada;
${}^{t}\mathcal{E}_{0}$	deformação longitudinal no centróide do elemento;
${}_{t}\mathcal{E}^{p}$	deformação plástica efetiva incremental;
${}_t\mathcal{E}^P_{\theta}$	deformação plástica na direção circunferencial;
$_{t}\mathcal{E}_{r}^{P}$	deformação plástica na direção radial;
${}_{t}\mathcal{E}_{x}^{P}$	deformação unitária plástica na direção longitudinal;
${}^{t}\mathcal{E}_{x}$	deformação unitária longitudinal;
\mathcal{E}_{g}	deformação axial de campo livre;
Δ	incremento;
∇	operador Nabla;
ϕ	curvatura;
θ	rotações;
σ	tensão;
ω	freqüência;
ξ	coordenada natural axial;

δ_{ij}	delta de Kronecker;
σ'_m	tensão efetiva principal media;
К	parâmetro de encruamento;
Ξ	matriz tangente elástica modificada;
η	coordena natural;
Г	configuração da estrutura;
τ	tensão cisalhante;
ρ	densidade do material;
ξD	tolerância em termos de deslocamento;
ŠF	tolerância em termos de força;
ζ́Ε	tolerância em termos de energia;
\mathcal{E}_{η}	deformação normal;
${\cal E}_{\xi}$	deformação tangencial;
χ	multiplicador plástico;
$\begin{bmatrix} C_{Dut} \end{bmatrix}$	matriz de amortecimento do duto;
$\left[C_{\scriptscriptstyle Solo} ight]$	matriz de amortecimento do solo;
$[^{t}D^{P}]$	matriz de propriedades de material da seção transversal da tubulação;
$[^{t}F]$	matriz de força axial;
$[^{t}N]$	matriz de funções de interpolação;
[K]	matriz de rigidez;
$[K_E]$	matriz de rigidez elástica para um elemento;
$[K_{_{EP}}]$	matriz de rigidez elasto-plástica para um elemento;
$[^{t}M]$	matriz de momento;
$\left[M_{_{Dut}}\right]$	matriz de massa do duto;
$\left[M_{solo} ight]$	matriz de massa do solo;
$[^{t}T]$	matriz de transformação;
$\{P\}$	vetor de carga externa;
$\{Q\}$	vetor de força equilibradora;
<i>{u}</i>	vetor deslocamento;
	valor absoluto de a;

"Á homens que lutam um dia e são bons, há outros que lutam um ano é são melhores, há os que lutam muitos anos é são muito bons. Mas há os que lutam toda a vida e estes são imprescindíveis." Bertold Brecht